
Copyright ©2010 Blake Elder Page 1 of 7

On Schedules

First lesson
The first project schedule I created was at Frame Technology (1992-1995). I had accepted an offer

to manage a team of qa engineers responsible for testing the Macintosh version of FrameMakeri.
With the job came the usual administrative tasks, including creating schedules for various proj-
ects.

Like many managers in smaller software companies, I was promoted but given no formal training
in management, let alone any guidance on creating a schedule. At my first team meeting as a man-
ager, the marketing manager (who also ran the project) asked me how long a particular set of tasks
would take. As well as being a new manager, I was somewhat new to the Macintosh platform,
having worked in Windows/DOS for most of my career. So when the product manager awaited
my response, I told her I’d have to get back to her. She paused, knowing my situation as a new
manager, then asked when did I think I would have a schedule?

That’s when I got my first lesson on crafting a schedule. If you aren’t ready to provide a schedule,
that’s not necessarily a bad thing. But, you should, must, promptly commit to when you will have
a schedule. This is sometimes called giving a date for a date. If there’s one schedule related lesson
I impress on managers and senior people working for me, it’s to never, ever say “I don’t know
how long it will take” and then not follow up with “But I’ll know by the end of the week.” Do this
in my department and you should start to update your resume.

Questions and more questions
After that first meeting I talked to some of the more experienced software managers. Most of
them, I learned, had no formal training in scheduling, but had been creating schedules for a num-
ber of years. I started a list of questions which, like chisel strokes on the uncarved block, work
away to reveal a schedule. Over the years the list has grown. Note that some of these questions are
conditional, depending on the nature and version of the software or project.

1. How long will it take dev to do X? This is usually my first question, but it is loaded with
caveats. The proverbial two line change by dev might take less than a minute to make, a few
minutes to compile, and a few more to push into a branch for testing. But that little change in
dev could have large testing implications. On the other hand, a new feature or slew of bug
fixes by a competent developer might not require much qa time. So the point here is under-
stand how applicable the answer to this question is to the testing tasks.

2. How long did it take last time? Has the feature or release or whatever existed in some form
before? If you are working on something brand new, this question is not useful. History can be
a useful guide to future test durations, yet only if the circumstances are somewhat similar. If a
feature has not been changed, or changed very little, then it will needlesstesting time than

i. A sophisticated desktop publishing application first released in 1988. Frame was acquired by Adobe in
1995.



Copyright ©2010 Blake Elder Page 2 of 7

before. If development is making significant changes (I’ll let you figure out how to quantify
‘significant’), then you will needmoretime. But how much more?

3. How long did it take the other team?This is a variation on number two above. At Frame we
supported three major platforms: UNIX, Mac, and Windows. Frame always released the

UNIXii versions first, so the Mac and Windows teams knew in detail how long dev and qa
took for that first release. Now task duration, for say, testing footnotes, might not take exactly
the same time as on UNIX, but at least you had a starting point.

4. How many developers, how many qa?Unmentioned so far are staff size and time units, i.e.
man hours. So when getting numbers from developers or other test teams or past projects, it’s
important to make sure you’re using units that make sense across projects and contexts. If
three developers spend seven days on feature X, how much time will two qa engineers need to
test feature X? Solve and show your work.

5. Configuration testing requirements. The unique burden of qa. Over the years and across
companies this has meant different things, but in every case it’s a lot of work.

• At Frame qa tested on SunOS, Solaris, HP-UX, Mac OS for CISC, Mac OS for RISC. Win-
dows 3.1, maybe some others. In addition, qa needed to make sure FrameMaker worked well
with other key publishing and printing software, such as Adobe Type Manager and various
font packages.

• At Visioneer we built scanners and software. We needed to test on Macs and Windows sys-
tems, and also through a variety of hardware ports: COM port, parallel port, SCSI ports, etc.
For fun you could daisy chain some hardware devices (Iomega was the most common) to
make sure port contention worked fine.

• At Claria we supported only Windows, and tested Internet Explorer, Firefox, and OEM ver-
sions of IE, such as from AOL or Yahoo. In addition, qa kept busy with various connection
types: dial up, ISDN, DSL and it’s variants, cable modems, etc.

• At Playlist it was a combination of operating system (OS) and browser. Testing was priori-
tized based upon Google analytics reports of our several million per day visitors. At the time it
was roughly WinXP, Vista, Mac OS, running Internet Explorer, Firefox, and Safari (Mac
only).

You get the idea. Within each of these, there were always more questions: how different is
Win98 from Win95? Or more recently, Window 7 from Vista? What about that new version of
Firefox? What market changes require you add or drop a platform? For example, in the early
days of the internet most users surfed the web with either Netscape or IE. Today Firefox
replaced Netscape, and you can add to your configuration list Chrome, Safari, and if enough
of your audience uses it, Opera.
Also, how much configuration testing development does prior to submitting to qa? Usually
it’s not much. This situation is a bit logistical and a bit cultural. On the logistics side, it’s often
hard for a developer to have all necessary configurations available to debug on. On the cul-
tural side, developers have their preferences. At Playlist most of the developers were on Macs
and were not inclined to look at IE. The Playlist web site looked awful on IE, especially IE6,
which comprised about thirty percent of the audience, until users started to upgrade.

ii. SunOS, Solaris, and HP-UX



Copyright ©2010 Blake Elder Page 3 of 7

Configuration testing is a huge topic, so make sure you understand it’s breadth and depth.
Once in a while perhaps the gods will smile on you, and all your end users run the same type
of system. O happy day.

6. Third party code, third party interactions? If all the code you test comes from developers
at your company, you can skip this section. Otherwise, there are third party dependencies of
various kinds:

• Many shrink wrap applications could export their files to some other format. Intuit’s Quicken,
Frame’s FrameMaker, and Visioneer’s Paperport could all export their native file formats to
some other format, thereby making the files more portable. Often the code or libraries to do
the export were written not by the developers at those companies, but by third parties.

• One of my favorite features ever was PaperPort’s Simple Search. Eugene Veteska, the devel-
oper, wrote his own code, then integrated a third party OCR program and also dtSearch’s
index and search code. The feature worked great when released, but engineering had to work
closely with the OCR vendor and dtSearch to get fixes and changes.

• At Playlist we built a music track and playlist purchase system. A key part of the flow was the
payment provider, Vindicia. Keeping them in the loop and working with their development
team added considerably time, and delays to the project.

• At Playlist we relied heavily on Open Source software, especially memcached. The developer
who owned this area was not fluent in this technology, and we had to hire a consultant to help
sort out the problems, adding costs of time and money. And we had to customize memcached
for our particular requirements.

So why does this matter? I believe the more outside code there is, the riskier your schedule is.
Technology providers (third parties) often have other, larger customers, so your fixes may be
delayed. More recently, open source code works very well and is fantastic for in many ways,
but it may take your developer(s) a while to fully understand it, especially if they are working
with new packages.

But, again, what does this have to with creating a testing schedule? Often neither the project
manager nor the dev manager will factor in potential delays or turn around time when getting
bug fixes for outside code. So at a minimum you must state as an assumption an expected turn
around time for fixes for third party code. Even better would be to assume some lag in fix time
and add in time to your schedule.

7. Are you familiar with the thing? You’ll know much more about a feature and the required
test time if you are familiar with the feature/module/product/thing. Try to take the code for a
test drive before scheduling.

8. Concurrent projects. Often your team may be working one or two other projects. Will these
take away time for the project you are scheduling? Are developers working on other projects,
causing them to delay implementation and bug fixes? If conflicted, which project is more
important?

9. What type of testing is needed?Maybe you’re building and testing a quick prototype to
deploy to a test audience. Maybe it’s mission critical software. Just doing load testing on some
servers? Or is it a regression of an English version localized into FIGS (French, Italian, Ger-
man, Spanish)?



Copyright ©2010 Blake Elder Page 4 of 7

10.The most important thing: the people doing the work. Let’s start with dev. You must know
the ability of the developers who are writing the code you test and are fixing the bugs you log.
As with so much, success depends on the quality of the developers. Did the developer provide
good information about her feature? Does her code work when it comes into qa, or is there
something wrong with it and it takes two or three tries? Are bug fixes delivered quickly, with
good notes about testing? No amount of good testing will make up for a bad developer. Know-
ing the developers will help you make a more accurate schedule.
The same applies to your test team.Understanding their strengths and weaknesses will help
you create more realistic schedules.

The above list is not the last word in scheduling, but it’s a start. There are books and websites that
provide better parameters for creating a schedule. If looking around, start with something from
O’Reilly. Of late I’ve liked Scott Berkun’sThe Art of Project Management.

There’s one other question I ask, but it’s usually directed at marketing, sales, or business develop-
ment managers who are understandably eager to ship the next ‘thing’. Of course, that question is
“When do you want it?” Obviously the business considerations of a project are very important,
but knowing a desired or expected release date is separate from figuring out how much test time
you need. If the schedule you come up with is at great variance to the preferred business release
date, then you must work with the team to reduce the scope of the release, revise the release date,

or something else.iii

Tools
In the mid-1990’s Frame managers used MacProject to create schedules. When I started making
schedules, I used MacProject also. The most salient feature, and really the only one I recall, was
the use of PERT charts for listing tasks, their owners, and dependencies. Below is an example of
MacProject PERT charts, circa 1994.

iii. A common problem across industries across the ages. One of the better software narratives on this topic is
the classicThe Mythical Man Month.



Copyright ©2010 Blake Elder Page 5 of 7

This view is kind of useful. And MacProject had a cool feature that would show (in red!) the crit-
ical path of a project. But generally, I did not, and do not find PERT charts very useful, especially
for creating and modifying schedules. Most projects had many tasks, running into the low hun-
dreds, and the MacProject interface and UI did not lend itself to easily managing large numbers of
tasks.

One day walking by the office of a development director, Paul Bailey, I noticed he had a schedule
on his wall done in Excel (easily recognized by the spreadsheet style). Column A was the task,
column B the owner, Column C the duration. There might have been a few more columns. I liked
the clean style of listing the tasks, and the easy way of typing in tasks and owners; MacProject
was clunky. Paul said he preferred using Excel over MacProject for these reasons, and was also
looking into Microsoft Project as an alternative scheduling tool.

I got a copy of Microsoft Project, for Windows, and started working with it. As much as one can
like scheduling software, I liked MS Project. There was a spreadsheet style grid for entering tasks,
making modifications was easy, and there were numerous views available: Gantt chart, Pert chart,
etc. Now an experienced scheduling manager who had used other tools, such as Project Work-
bench, might have taken a dim view to my efforts and tools, but for me, it worked just fine. A
view of MS Project:



Copyright ©2010 Blake Elder Page 6 of 7

Scheduling in action
About a year after becoming a manager at Frame, we went through a reorg, and then engineering
was given a large project: a major release of FrameMaker on all supported platforms, with the
same release date. Such a broad, simultaneous release had not been done before and required
major coordination between the various platforms teams (dev/qa): UNIX, Mac, and Windows.
The qa department had a new leader and she made me the schedule czar for all qa work. This was
no great honor, but I learned a lot. The process was roughly:

• The qa managers and engineers created schedules by assigning qa people to tasks, setting the
order of the tasks, and estimating the time needed to test. We went through this cycle a couple
of times before we were satisfied.

• In MS Project I set up an engineering calendar to set the work day to six(6) hours, any only
five days a week. In case this needs explanation: given typical interruption rates and the usual
distractions such as meetings, an engineer working six solid hours per day on a tasks is a huge
accomplishment.

• Once the project started, on Mondays I would give each qa engineer his schedule of tasks for
that week. Call these “the planned” schedules.

• On Friday afternoons the qa engineers would send me the results of their work. Also known as
the actual schedule. I would then update MS Project with the latest information, then re-level,
and see how were doing relative to the plan.

• The qa schedule fed into the larger project schedule; dev and doc were the other groups qa
marched with.

The Framemaker project took about a fourteen months, and the above described scheduling drill
lasted for about eight months. The product shipped two months late.

Lessons learned
1. Under the best of circumstances, a well planned and regularly maintained schedule has about

85% accuracy with regard to how long tasks take, milestones (such as beta), and project com-
pletion dates.

2. Engineers are not very good at estimating task durations. Ditto for managers. Put another a
way: accurately estimating durations in software is hard. Having previous schedules (planned
and actuals) was very helpful for future planning, assuming reasonable similarity across the
projects.

3. For a certain class of software projects, I am not sure it is worth the effort to create, maintain,
and track a detailed schedule. There might be better indicators of the state of the software and
readiness to ship/deploy, which is really the only milestone that counts. Moreover, for many
web/agile style projects, the methods and tools described here are not appropriate.

4. Since leaving Frame, I have never created AND maintained a detailed schedule. I have used
MS Project to create schedules at the beginning of a project. This is useful for creating
detailed tasks lists, owners, and estimating durations. But once a project is started, I have not
tracked actuals.

5. Creating these schedules can be a useful tool for managing up, especially executives. If noth-
ing else, I have learned how to quickly create a detailed schedule and use it to whatever end I
need, usually getting more time and people.



Copyright ©2010 Blake Elder Page 7 of 7

To agility and beyond
Ashton Tate, Intuit, Frame, and Visioneer published shrink wrap software. At these companies the
schedules generally followed a waterfall method. Project durations were in the weeks and months,
and could easily last over a year. Creating and maintaining schedules was generally helpful given
the long nature of these projects.

Claria (aka Gator) was a bit of a hybrid between classic release methods and web/agile styles.All
client side software distribution was over the internet. Claria’s software, which interacted with the
user’s browser, ran locally on users’s PCs. Because there was a client side installation, to certain
extent we needed to be careful and thorough when building the software. But, and that’s a big but,
since delivery and updates were done over the internet, we had a bit more flexibility (agility?) in
our releases. At Claria I occasionally created a schedule in MS Project, but this was done at the
beginning of projects and never maintained.

After Claria I worked at Playlist.com, where the entire user experience was through the browser, a
full web 2.0/agile environment. Our tools for tracking tasks were ScrumNinja and Fogbugz, but
this was only for developer tasks. Given that I had a small team, and Playlist released weekly, I
rarely created anything that could be called a schedule.

One of the primary scheduling advantages of the agileiv model at Playlist.com was the decompos-
ing of larger tasks in to more manageable, trackable tasks. You would never see a developer work-
ing on something called “new website” for six months (I exaggerate to make a point). With an
agile style project you know much sooner if something is falling behind, and therefore have a bet-
ter chance to fixing the problem.

If you’re a qa manager at a software company, chances are you’ll be asked for a schedule in some
form or another. Find a decent tool (Open Workbench looks pretty interesting) or web site (I’ve
used Zoho recently and liked it) but don’t spend endless hours on the drill. Understand the bene-
fits, potholes, and reality of scheduling. The rest of your company needs to know what you are up
to, and what you are doing, and when you are doing it. Provide them with this information in a
clear, concise manner, but don’t go overboard; you have too many other things to do.

Sources
Mac Project image from the article by Larry J. EngelKern,Project Management Tips For AM/FM
Project Planning and Implementation.

Microsoft Project image from The Critical Tools web site (http://www.criticaltools.com/).

iv. To be sure agile, and extreme/xp and scrum organizations all suffer from their orthodoxies. My favorite is
the requirement of creating a test before the code exists to prove the code does not exist. That’s about as
useful as counting the number of angels dancing on the head of a pin. I’ve also found agile to be a bit of
an excuse to deliver sloppy code. And last, people really do spend entire meetings standing.


